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Abstract

The spreading phenomenon of private information is in
vestigated in the context of spreading phenomena on net
works. We simulated spread of private information on scale-
free networks and on lattice. The epidemic disease spread
ing models such as the SIS and the SIR are applied. In
our simulation, creation of new information through the in
teraction between two packs of information are taken into
consideration; such new information can propagate on net
works. Information creation made the spreading of privacy
easier to take place and at a wider range in networks in
many calculations, including in the parameter region where
the spreading is usually difficult. More strict rules against
the leaking of privacy, and/or, technologies will be needed
in order to inhibit the spread of private information, when
the integration of various information is easy in the era of
"Big Data". To set time-to-live (TTL) to the private data
may be a good method.
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1 Introduction

Privacy leakage is a big problem in an era of "Big Data", although
it is difficult to define "privacy". [9]. There are some privacy pro
tecting technologies (e.g. [10] [6] [2]). However, there are effective
attacks on some of the technologies [6]. There are not only tech
nologies but also some laws that protect privacy or let the govern
ment reveal private data. However, different nations have different
laws [7], so the situation is not uniform. If the leakage of the data
(or information) occurs, it is able to spread through the Internet
or by word-of-mouth communication.

The spreading (propagating) processes of private information
are similar to the epidemic spreading. The epidemic spreading is a
generic phenomenon and applied not only to diseases but also ru
mors or information. The epidemic spreading in complex networks
has been widely studied [11]. For instance, Pastor-Sattoras and
Vespignani (2001) reported the absence of the epidemic threshold
on a wide range of scale-free networks [12]. The Internet has the
scale-free network structure [14], so an understanding of spreading
processes on networks are important for the privacy research.
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Although privacy preserving mechanisms are presented (e.g.
[8]), "Big Data" may enable us to uncover some private informa
tion of persons [2]. For example, using well-known information or
data which is easy to get, private information will have a chance
of being uncovered, if someone relates those information together.
The new information is, so to speak, created using well-known or
less-known information. Moreover, the information used has the
property of spreading. It is natural to assume that different data
spread on different networks.

In this paper, we will investigate the effect of information cre
ation on private information (or data) spreadings on networks.
Our approach is as follows. The three layers of different types
of networks, on which the same people belong, are assumed. The
well-known information, "To" and "Zi", will spread on the network
layer "0" and layer "1", respectively. If the two pieces of informa
tion are acquired by the same person at the same time, we assume
the privacy information is uncovered by that person with some
probability. Once the privacy information "J2" is uncovered, that
privacy information can spread on the network layer "2" indepen
dently, besides the continuous process of the uncovering privacy
through the network 0 and 1.

In the following sections, we describe the models, the method
of simulation, present the results of the simulation, then discuss
them and show our conclusion.

2 Spreading models

The spreading models used in this paper are the SIS and SIR
models. Here, we briefly describe these epidemic spreading models
and also a model which has an interaction between diseases. We

will use this model. A more detailed description of the SIS and
SIR models can be found in [4] or [11].
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2.1 The SIS model

The persons on the network are in the susceptible state, <S, if
they are not infected by the disease at some time. If the persons
are infected, their states are changed to J. Infected persons will
recover with no immunity to the disease at some time. That is,
recovered persons are in the susceptible state, S, again. This
transition process, S —> I -¥ S, is called the SIS model.

There are two parameters, fi and \i, which describe the SIS
transition. The parameter fi is the infection probability. The sus
ceptible persons will be infected with the disease with the proba
bility fi when there is an infected person in the neighborhood. On
the other hand, the infected person recovers spontaneously and
the parameter fi is the recovering probability. Thus, we express
the SIS transition as

I +SA2I, (1)

/ 4 S. (2)
In the context of privacy spreading, S denotes the state of the

persons who do not have the "information". If the persons get
the "information" through interaction with their neighbors on the
network, their state changes to the infected state I. After some
time, infected persons will forget the "information" thoroughly,
and return to the state S again.

2.2 The SIR model

The SIR model is a variation of the SIS when considering the
immunization. Infected persons will recover with immunity to the
disease at some time. The recovered persons no longer have the
chance to be infected by the disease after recovering. This state is
denoted by R. Therefore, the transition process in the SIR is as
follows: S -> I -• R.

The SIR model also has two parameters, fi and /Li. The transi
tion of states in the SIR is as follows:
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/ + 5 4 2/, (3)

SAR. (4)

Again, in the context of privacy spreading, R denotes the state
of persons who had the information and deleted it intentionally.
So, they will neglect the information immediately if the same in
formation is transmitted by neighbors.

2.3 Interaction of informations/diseases

We assume that there are three information/diseases named 0, 1
and 2. They spread on different networks but the nodes on the net
works are common. We write the state of a node as (Xo,X\,X2)
where Xi is a state of the information/disease i (i = 0,1,2), and
the values of Xi is S and I in the SIS model, and 5, J and R in
the SIR model.

Information/disease 2 is created by the interaction of the in
formation/disease 0 and information/disease 1 in a node.

(/, 7,5H(/,/,7). (5)

In the simulation, we assume the interaction shown in eq.(5) occurs
with the probability poi2 in each time step.

3 Computer Experiments

We performed computer experiments of the spreading phenomena
on networks according to both the SIS and SIR models. The
network making programs and spreading simulation programs are
made using a high performance Scheme (a lisp dialect [1]) compiler
Bigloo [13]. As a random number generator, Mersenne Twister is
used.
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3.1 Topology of the network

As described in the introduction, there are three layers of different
types of networks, on which the same people belong. The network
models used in this paper are the scale-free network, a random
network and the lattice network.

3.1.1 Scale-free networks

The network described in Barabasi and Albert (1999) [3] is a typ
ical scale-free network. We constructed the Barabasi and Albert

network using the algorithm proposed by Bollobas and Riordan
(2004) [5]. We call this network "BA-BR network", hereafter. The
BA-BR algorithm is slightly different from the original Barabasi
and Albert's algorithm, since it allows the connection to the adding
node itself.

Initially it has one node which points itself. The algorithm
add nodes with m edges which stochastically points to old nodes.
The pointing probability is proportional to the numbers of edges
of the nodes. Figure 1 show the cumulative degree k distribution
of a BA-BR network.

Our program for constructing the BA-BR network is named
"BA-naive". An example of the output of BA-naive is as follows:

$ BA-naive -i 3 -a 1 -b 1 -t 10 -i 1
;;; 5948331192
;;; BA-naive v2.0; t = 10; i = 1; a= 1; b= 1; dms = 0

110 0 0)((0000) 9877655433 3 2 2 2

(d oio) 6 4 1)
((2000) 4)
((3000) 6)
((4 2 0 1) 8 5)
((5040) 7)
((6 1 0 3):)

((7500) 9)
((8408) 9 8)
((9 0 8 7):)

The output is Scheme (a lisp dialect) expressions. Contents can



$!:¥?£-&/4"J1$± : Privacy Spreading on Networks 15

m3t1e6BRiO

-(gamma-1) = -1.938759

t r

2000 5000

Figure 1: The log-log plot of the cumulative connectivity degree
k distribution of a BA-BR network created by the program BA-
naive. The line of a linear model fit is also shown.
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the network

Figure 2: A BA-BR network of m = 3, AT = 10 presented as a
directed network. In the spreading simulation, we treated this
network as a undirected graph.

be extracted using Scheme procedure car and cdr 1 . When the
line of the output is x, (car (car x)) is the label of the node,
(cdr (car x)) is the list of the labels of the nodes to which the

node is directed, (cdr x) is the list of labels of the nodes which are

directed to the node. For example, when x is ((4 2 0 1) 8 5),
(car (car x)) is 4, (cdr (car x)) is (2 0 1) and (cdr x) is
(8 5). The structure of the above network is shown in figure 2 .
The network graphs are made using Graphviz.

'When x is (a b c d), (car x) is a and (cdr x) is (b c d).
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km3t1e5RA1iO

Figure 3: The degree k distribution of a RA network.

3.1.2 Random networks

By replacing the preferential attachment of nodes in BA-BR al
gorithms by the random attachment, we can construct Random
networks. We call this type of network RA network hereafter. Fig
ure 3 shows the distribution of connectivity degree k in a random
network.

3.1.3 Lattices

We also use the 2-dimension square lattice with periodic boundary
conditions i.e. a torus. An example output of the lattice-making
program which makes a 4x4 lattice follows.
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the 4x4 lattice torus

Figure 4: The 4x4 lattice presented as a directed graph,
node has 4 neibours.

$ make-lattice 4 4
;;; make-lattice 1
((031 4 12))
((1 0 2 5 13))
((213 6 14))
((3 2 0 7 15))
((475 8 0))
((5 4 6 9 D)
((6 5 7 10 2))
((764 11 3))
((8 11 9 12 4))
((9 8 10 13 5))
((10 9 1LI 14 6))

((11 10 8 15 7))
((12 15 13 0 8))
((13 12 14 1 9))
((14 13 15 2 10))
((15 14 12 3 11))

Each

Figure 4 is the graph of the 4x4 lattice presented as a directed
graph.
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3.2 Spreading Simulation of SIS and SIR

Spreading Simulation of SIS and SIR are performed as follows.
There are N nodes in a network. Suppose a node labelled i (0 <
i < N). It has a state of 5, I or R. If the node labelled i is in
the state of 5, / or R, we write Sj, Ii and Ri respectively. In each
time step, it changes the state following the model of SIS or SIR.
As for the SIS model, for each time step, for all infected neibors
(directly connected nodes) j,

Ij +SiA Ij +Ii (6)

and for each time step,

Ii A Si (7)

where and fi and fi are constants.
As for the SIR model, the infection process is the same as that

of the SIS model; for each time step, for all infected neighbors
(directly connected nodes) j,

Ij +SiA Ij + Ii (8)

and for each time step,

h^Ri (9)

where and fi and fi are constants.

3.3 Spreading with Interaction

In our simulations, there are three informations which are named
to xo, x\ and X2, respectively. They spread on three different
networks, but the nodes are common on those networks. We wrote

the state of the node i as (Xit0, X^i, Xi(2). XijS (s = 0,1,2) having
the value of 5, / or R. When the node i has the value of S for x0,
R for xi, and / for a;2, we wrote (5,, RiJi) and so on.

Information xi can be created by the interaction of the infor
mation x0 and information x\ in each node on the networks, if the



20 {£M&gft»& 857&8l-t (2016^10fl)

node has both information xq and x\. We assumed this interaction
occurs with the probability P012 hi each time step.

If a node has both information 0 and 1, then the node will get
information 2 with the probability of poi2 hi a time-step,

{Ii,Ii,Si)p^ {IiJiJi) (10)

where (-Xi,o5-Xi,i 5-^1,2) is the state of node i .
The informations spreads on the different networks according

to the SIS model or SIR model. All informations have different

parameters (fi, p). We sometimes referred to them as fii and pi
respectively for information-i.

We made the programs in order to simulate the spreading pro
cesses. The number of informations is not restricted to three.

However, all informations propagate under the SIS model or all
informations propagate under the SIR model.

4 Results

At first, we presented the results of SIS and SIR simulations on
various networks and then presented the results of the interaction
simulations. We also presented the interpretation of the results in
the context of privacy information spreading.

4.1 Typical SIS time variation

We showed typical SIS time variations p(t) on networks. Here, the
density of the infected nodes p(t) can be calculated by,

the number of the infected nodes . .

the total number of the nodes

in each time step. In the context of the privacy spreading, p(t) is
the privacy information density.
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Figure 5: BA-BR networks with m = 2,3,6. For all simulations,
parameters are fi = 0.03,// = 0.1 and poi2 = 0. For all panels, the
horizontal axis is the simulation time-step and the vertical axis is
the number density pi of the nodes which have the information-i
(i = 0,l,2).
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4.1.1 SIS on BA-BR networks with m = 2,3,6

In figure 5, we plotted the SIS information density time-variation
on the BA-BR networks with m = 2,3,6 where m is a parameter
of the network. (Each new node has m edges which points to an
old node.) The horizontal axes are the simulation time-steps and
the vertical axes are the number densities pi of the nodes which
have the information-z (i = 0,1,2). In this case, we set poi2 = 0, so
there was no interaction. All simulations have one initial infected

node.

In many case, p(t) showed exponential rise at the first stage of
our simulations, and then reached metastable state. In some case,
however, the epidemic ended when the state p(t) = 0 occurred at
some time.

However, p in the metastable state increased as m increased
and the rising time decreased as m increased. The privacy in
formation spread more rapidly in the networks which has larger
m.

4.1.2 SIS interaction on (a BR-BR, a RA1, a lattice)

In figure 6, we plotted the similar simulations with that in figure
5 on a BA-BR network, a RA network and a lattice. We plotted
the same simulations in a longer time range in figure 7.

Although the spreading on the BA-BR network was more rapid
than that on the RA network, the behaviors were similar to each
other. The spreading on lattice was much slower than others. It
reached metastable state at a time-step of about 1300 although
the others reached it at a time-step of about 30.

The spreading of privacy information was most prominent when
it was on the BA-BR and the lattice. Hereafter, we will concen
trate on BA-BR networks and lattice; and as for the the BA-BR
networks, we will use m = 3.
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Figure 6: Spreading on a BA-BR network, a RA network and a
lattice. For all simulations, parameters are fi = 0.12, p = 0.1 and

P012 = 0.
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Figure 7: Same plot as figure 6 in longer time range. Spreading
on BA-BR network, RA network and lattice. For all simulations,
parameters are fi = 0.12, p = 0.1 and poi2 = 0.
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4.2 Typical SIR time variation

4.2.1 SIR on a BA-BR, a RA1 and a lattice

Figures 8 and 9 show the same simulation with different time scales
of the time variations of pt(i = 0,1,2) for the SIR spreading on a
BA-BR network, a RA1 network and a lattice. The density of the
infected nodes p(t) showed rapid exponential rise and the following
slower decay on both the BA-BR network and RA network. The
spreading phenomenon on the lattice was much slower and more
localized than those on the BA-BR network or the RA network.

Here, the "localized" means

Pmax, lattice « Pmax, BA-BR' (12)

where /?max is the maximum value of p(t).
Thus the information spreads more rapidly on scale-free net

works than on lattices. In order to spread on a lattice, large fi
is needed. Moreover, the time scale of the spreading on BA-BR
networks are very weakly dependent on the size of the network,
but those on the lattice are heavily dependent on the size.

4.2.2 SIR on lattices with various fi

In figure 10, we plotted the SIR time variation of pi with fi =
0.105,0.1,0.095 on a lattice. The pi(i = 0,1,2) decayed soon under
the condition of fi < 0.1.

4.3 Interaction for SIS

We studied the SIS spreading with the interaction on various net
works. The variations of po, p\, and pi were simulated on different
networks. At first, we treated all networks as scale-free.

4.3.1 Spreading on BA-BR networks (BA-BR, BA-BR,
BA-BR)

In figure 11, we plotted the time variation of the density of the
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Figure 8: SIR Time variation of pi(i = 0,1,2) on various networks.
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Figure 9: SIR Time variation of pi(i = 0,1,2) on various networks.
This plot is the same as figure 8 but in a narrow time range.
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Figure 10: SIR time variation of pi(i = 0,1,2) on a lattice. The
upper panel is po with fi = 0.105. The middle panel is p\ with
fi = 0.1. The upper panel is p2 with fi = 0.095.
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Figure 11: SIS spreading on BA-BR networks and the density time
variation of the created information (upper and middle panels).
The lower panel shows p2 which is created by the interaction of
information-O and information-1. In the lower panel, fi = 0, so the
network is a dummy.
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information-O po on the upper panel, the density of the information-
1 p\ on the middle panel and the created information-2 p2 on the
lower panel, po, p\ and p2 are on the BA-BR networks. The BA-
BR networks were not same but different networks. As shown in

the figure, SIS parameter p = 0.1 for all variation of pi(i = 0,1,2).
fi = 0.012 for po, fi = 0.012 for pi and fi = 0 for p2. We set the
information creation probability po12 = 0.1. po and pi showed typ
ical SIS time variation on the scale-free network. p2 showed similar
variation profile to that of po and p\. However, information-2 can
not spread by itself because fi = 0.

In this case, the information-2 was created only by the inter
action of the information-O and information-1. The time variation

of p2 represented the time variation of the density of nodes which
have both information-O and information-1.

In figure 12, we plotted again the similar time variation to that
of figure 11. However, in this case, fi of information-2 was not
zero. However, the fi was very small. The p2 of information-2 was
larger than that of figure 6. It was difficult for the information-2 to
survive long with the fi. However, it survived in this case because
the seeds created by the interaction were supplied continuously.

Thus if the information-2 is created by the interaction of information-
0 and information-1, the spreading of it is more rapid and broader
than without the creation. If fi of information-2 is as large as that
of information-O or information-1 (we did not show the plot), the
role of the interaction is only a supplier of some initial seeds of
SIS spreading.

4.3.2 SIS interaction on (BA-BR, lattice, lattice)

In figure 13, we plotted the time variation of the density of the
information-O po on the upper panel, the density of the information-
1 pi on the middle panel and the created information-2 p2 on the
lower panel, po is on the BA-BR network and p\ and p2 are on the
lattice. As shown in the figure, SIS parameter mu = 0.1 for all
variations of p. fi = 0.01 for po, fi = 0.2 for p\ and fi = 0 for p2.
We then set the information creation probability poi2 = 0.1. po
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Figure 12: SIS spreading on BA-BR networks and the density time
variation of the created information (upper and middle panels).
The lower panel shows p2 which is created by the interaction of
information-O and information-1.
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Figure 13: SIS spreading on networks and the density time vari
ation of the created information. CAUTION: the network of the

lower panel is meaningless because fi = 0.
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showed a typical SIS time variation on the scale-free network, pi
showed a much slower rise. p2 showed a similar variation profile
to that of pi.

Information spreading on the BA-BR network reached a metastable
state much earlier than that on the lattice, so the profile of p2 is
similar to that of p\.

In figure 14, the authors again plotted the similar time varia
tions to that of figure 13. In this case, fi of p2 is not 0 but 0.1.
The time variation of p2 has shape which is a mixture of those of
po and pi. At first time (time-step 50 - 100), p2 showed a rapid
increase and after that (time-step 150 - 250), it showed a slight
increase and (time-step 250 - 400) then it increased again. The
first rise was caused by the spreading on the BA-BR network after
the creation of information/disease2 in a node on the network. It
was followed by a metastable state of SIS. However, it was followed
by the increase caused by the increase of pi. At last (time-step
700—), it showed a metastable state.

P2 of the metastable state was larger than po and was larger
than p2 in figure 13. In this case, the interaction and the creation
of the information made the spreading of the information broader.

4.3.3 SIS interaction on (BA-BR, BA-BR, lattice)

In figure 15, we plotted the time variation of the density of the
information-O po on the upper panel, the density of the information-
1 pi on the middle panel and the created information-2 p2 on the
lower panel. p0 and pi are on the BA-BR networks. p2 spreads
with fi = 0.12 on a lattice.

In this case, the spreading of information-2 on the lattice was
much faster than that in figure 7. The spreading is supposed to
be mainly caused by the interaction and creation. However, the
metastable p2 was similar in value to that in figure 7.

4.4 SIR cases

We also simulated SIR spreading with interactions.
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Figure 14: SIS spreading on networks and the density time varia
tion of the created information.
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Figure 15: SIS spreading on networks and the density time varia
tion of the created information.
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4.4.1 SIR interaction on (BA-BR, BA-BR, BA-BR)

In figure 16, we plotted the time variations of p in a SIR case.
The spreading on the BA-BR networks (the top and middle pan
els) showed a typical rapid rise and decay of po or p\. On the
bottom panel, the time variation of p2 is shown. In this case, the
information 2 has little ability of spreading by itself (fi = 0.0012.
The profile of the time variation looks like a product of po and pi
but the maximum value was much smaller.

4.4.2 SIR interaction on (BA-BR, lattice, BA-BR)

In figure 17, we plotted the time variations of p in a SIR case.
The spreading on the BA-BR network (the top panel) shows a
typical rapid rise and decay of po and on the lattice (the middle
panel) shows the monotonic rise of pi in this time scale. On the
bottom panel, the time variation of p2 is shown. In this case, the
information 2 had no ability of spreading by itself (fi = 0. The
profile of the time variation looks like a product of po and pi.

In figure 18, the authors plotted again the time variations of
p in a SIR case. In this case, information-2 was created when
both information-O and information-1 exist, and it spread mainly
by itself afterwards. It showed a typical SIR time variation. The
maximum of p2 in figure 18 was much larger than that of p2 in
figure 17. However, the maximum of p2 was comparable to that of
po, and the profile of p2 was similar to that of po, so the spreading
of information-2 should be the usual SIR spreading.

4.4.3 SIR interaction on (BA-BR, BA-BR, lattice)

In figure 19, we plotted time variations of p in different networks.
In this case, information-O spreads with fi = 0.02 and // = 0.1 on a
BA-BR network information-1 spread with fi = 0.01 and p = 0.1
on another BA-BR network, and information-2 was created with
the probability poi2 = 0.1 and had the ability of spreading with
fi = 0.01 and p = 0.1. The information-2 spread on a lattice.
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Figure 16: A case of 2 SIR-informations interaction.
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Figure 17: A case of 2 SIR-informations interaction.
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Figure 18: A case of 2 SIR-informations interaction. The p in the
lower panel has typical SIR time variation.
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Figure 19: Another case of 2 SIR-informations interaction.
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In this simulation, information-O showed a rapid rise and fol
lowed decay. Information-1 had similar a profile to that of information-
0 but the rise was delayed. Information-2 was created when both
information-O and information-1 existed, and it spread by itself
afterwards.

In figure 20, we again plotted a similar case to figure 19. How
ever, fi of information-2 is low in this case. Therefore, the profile
of p2 was similar to that of p2 in figure 19, but the value was lower.

However, the peak value of the profile of p2 was much larger
than in cases without creation (figure 10) and the duration time
was longer. In the cases of spreading on the lattices with fi < 0.1,
the spreading tends to decay in the early phase. In this case, the
spreading must survive owing to the the interaction and the cre
ation of the seeds of information and must have a larger expansion
than in cases without creation.

5 Discussion and Conclusion

Privacy information is guarded in many ways. However, when it
leaks, it spreads by itself in many ways. And if someone gath
ers the data (or information) of a person, one could create new
information about the person using the data.

In order to apply our results to a real-world situation, we
showed what the networks and the spreading models corresponded
to. If the leak of the privacy information is inhibited by law or
technologies, the spreading of it corresponds to low fi. The value
of fi depends on the strictness of the law or the completeness of
the technology. If the information spreads through the Internet,
it spreads on the scale-free network. If the information spreads
by word of mouth, it spreads on the lattice. If there is a law to
erase improper information, the information propagates according
to the SIR model, otherwise it propagates according to the SIS
model.

The SIS spreading on the BA-BR networks with various ras
shows that the spreading is more rapid in the network which has
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Figure 20: A 2 SIR-informations interaction. The fi of information
2 is low.
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a larger m. This means that the privacy spreading is more rapid
on a network in which each node has more connections.

A node can be thought of as a person or an organization.
A person forgets the information and an organization sometimes
loses data or may have a rule to abandon the data, i.e. the infor
mation has a lifetime. In this case, the spreading is well modeled
by the SIR model if the lifetime of the data is shorter than the
time scale of the rising, i.e. the typical outbreak time.

The typical SIS time variations show that if the information
is opened in the Internet, the spreading of it is very rapid and in
order to make the effect lower, fi should be lower, i.e. we need
strict laws or technologies. The typical SIR time variations show
that if the lifetime of the information is short, the effect of privacy
leakage is limited.

The SIS interactions on BA-BR networks shows that if the

seeds of privacy information spreads in the Internet or other scale-
free networks, the privacy information is created somewhere and
spreads widely. Even if the creation is difficult in our simulation
(small P012)) it spread rapidly after the creation.

The SIS interactions on BA-BR networks and lattice shows

the situation in which some of the information spreads through
word-of-mouth communication. It may be the situation in which
the leak of the information is forbidden, so the spreading is very
slow. The case on the section 4.3.3 (BA-BR, BA-BR, lattice)
shows that even if the leakage of the privacy is forbidden, if the
seed information of privacy spreads on scale-free networks, the
privacy information spreads rapidly.

The SIR interactions simulation shows the situation in which

the person forgets the information or the organization makes the
privacy data to have a time-to-live (TTL), i.e. the organization
sets the life time to the data and deletes them at that time. The

SIR interaction on the section 4.4.2 (BA-BR, lattice, BA-BR)
shows that if fi is large, the privacy information spreads rapidly
and decays after the creation even if some of the seed data is dif
ficult to spread. If fi is small, the created privacy information is
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a product of seed po and pi. Moreover, if the rising times of po
and pi are different enough with each other, the privacy informa
tion creation is vary rare. The SIR interaction on the section 4.4.3
(BA-BR, BA-BR, lattice) showsthat (comparing figure 20 and fig
ure 10) if there is the creation of privacy information, the privacy
information spreads more widely and for a longer time because
many seeds are supplied.

The interactions for SIS and SIR are enabled using the "Big
Data". The interactions for SIS and SIR show that if one is able

to create the privacy information using known information, the
spreading of it is easier than without the creation.

The ability to create information itself may be information.
Sometimes the information may be hidden from public access. In
this case, it spreads on a lattice. However, the interactions for SIR
on the lattice show that it is not a complete method.

In conclusion, the creation of privacy information using well-
known and less-known data is effective for privacy spreading. In
the era of "Big Data", we need more strict laws or technologies in
order to inhibit the spreading of the privacy information. To set
Time-to-live (TTL) to the privacy data by a technology or a law
may be effective. Or if we are able to forget, it may be good for
the privacy.
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